
Inline Relational Record Editing

D i p l o m a T h e s i s

supervised by the
University of Applied Sciences Hof

Faculty of IT and Engineering
Applied Computer Science

Hof, 26th February 2007

Submitted by
Oliver Hader
Untere Siedlung 2
95131 Schwarzenbach a.W.
Germany

Supervised by
Prof. Dr. Jürgen Heym
Alfons-Goppel-Platz 1
95028 Hof
Germany

Foreword

Foreword

During the last five years TYPO3 was fast-paced as Content Management

Framework. TYPO3 is distributed as open source project under the

General GNU Public License. The commitment and the decision of Dane

Kasper Skårhøj made it possible to pool development. This also enforced

improvement of the project.

To support the vision of TYPO3 - “inspiring people to share” - the results

of this diploma thesis are also explicit available under the General GNU

Public License and GNU Free Document License.

I am indebted to everybody who supported me in all aspects to realise

this considerably project.

— Oliver Hader

TYPO3 Core Team Member

II

Table of Contents

Table of Contents

Foreword... II

List of Abbreviations.. V

List of figures.. VI

1. Introduction.. 8

1.1. Case-Study.. 8

1.2. General purpose..9

2. Comparison...10

2.1. TYPO3 Core.. 10

2.1.1. Structures using regular database models......................10

2.1.2. Structures using XML (“FlexForms”).............................. 12

2.2. TYPO3 Extensions.. 13

2.2.1. Extension kb_tca_section.. 13

2.2.2. Extension dynaflex... 14

2.3. Requirements... 15

2.4. Engaged technologies.. 17

3. Compendium: Case-Studies.. 18

3.1. Reusing “select” type for 1:n relations.................................... 18

3.2. Normalized data structure for 1:n relations............................. 20

3.3. Intermediate tables for m:n relations..................................... 23

3.3.1. Bidirectional asymmetric m:n relations.......................... 23

3.3.2. Bidirectional symmetric m:n relations............................28

3.3.3. Attributes for each m:n relation....................................30

3.3.4. Using a record selector..32

3.3.5. Define uniqueness on relations..................................... 34

3.4. Appearance settings for TCEforms..35

3.4.1. Define visibility of child forms.......................................35

3.4.2. Define positions and style of new record link.................. 36

3.4.3. Use combined mode for complex relational editing.......... 37

3.4.4. Use drag'n'drop functionality to speed up sorting............ 38

3.5. Use Page TSconfig to override TCA settings.............................40

III

Table of Contents

4. Implementation... 41

4.1. TCEforms... 41

4.1.1. Namespace hierarchy..41

4.1.2. Edit a parent record.. 42

4.1.3. Create new child records... 44

4.2. TCEmain.. 46

4.2.1. Saving data after editing... 46

4.2.2. Copy inline related records.. 47

4.2.3. Move inline related records.. 47

4.2.4. Delete inline related records.. 47

5. Quality Assurance.. 49

6. Perspective and further Development... 50

6.1. Integration in TYPO3 Core.. 50

6.1.1. Integration in TYPO3 Core 4.1...................................... 50

6.1.2. Integration in TYPO3 Core 5.0...................................... 50

6.2. Development for TYPO3 4.x.. 51

6.2.1. Adjustments in TCEforms.. 51

6.2.2. FlexForms... 51

6.2.3. Workspaces & Versioning...52

6.2.4. Import & export of data structures................................52

6.3. Implementation of IRRE in extensions.................................... 53

6.3.1. Integration in Party Information Framework...................53

6.3.2. Integration in tx_kickstarter...53

7. Synopsis... 55

CD-ROM... 56

Bibliography..57

Declaration of Authorship..58

IV

List of Abbreviations

List of Abbreviations

AJAX Asynchronous JavaScript and XML

CMS Content Management System

CSS Cascading Style Sheets

CVS Concurrent Versions System

DOM W3C Document Object Model

EXT TYPO3 Extension

GFDL GNU Free Document License

GNU GNU is not Unix (recursive acronym)

GPL General GNU Public License

JSON JavaScript Object Notation

OASIS Org. for the Advance of Structured Information Standards

PHP PHP Hypertext Preprocessor (recursive acronym)

PID Page Identifier

SVN Subversion

TCA TYPO3 Table Configuration Array

TCE TYPO3 Core Engine

UID Unique Identifier

W3C The World Wide Web Consortium

V

List of figures

List of figures

Figure 1: Composition of involved entities...8

Figure 2: Using kb_tca_section for handling relational data................. 13

Figure 3: Comparison of features available for TYPO3 4.0.x................. 15

Figure 4: TCA type “select” for custom relations.................................18

Figure 5: TCA for 1:n relations with sequential list..............................19

Figure 6: TCA for normalized 1:n relations.. 21

Figure 7: Example view of 1:n relations.. 22

Figure 8: UML scheme of simple bidirectional asymmetric relations.......24

Figure 9: TCA for defining simple bidirectional asymmetric relations..... 25

Figure 10: Editing relation on intermediate table directly.....................26

Figure 11: UML scheme of extended bidirectional asymmetric relations. 27

Figure 12: TCA for extended bidirectional asymmetric relations............28

Figure 13: TCA for defining bidirectional symmetric relations............... 29

Figure 14: Bidirectional symmetric m:n relations of hotels...................30

Figure 15: TCA for adding attributes to each relation.......................... 31

Figure 16: Edit attributes for each relation.. 32

Figure 17: TCA for a record selector... 33

Figure 18: Using a record selector to create relations..........................33

Figure 19: TCA for defining uniqueness handling................................ 34

Figure 20: TCA for setting visibility of child records (appearance)......... 35

Figure 21: TCA for changing appearance of new record links................36

Figure 22: Changing appearance of new record links.......................... 36

Figure 23: Use combined editing mode... 37

Figure 24: TCA for enabling the combined editing mode......................38

Figure 25: TCA for enabling drag'n'drop sorting by script.aculo.us........ 39

Figure 26: Using drag'n'drop sorting...39

Figure 27: General Page TSconfig to override TCA settings.................. 40

Figure 28: General effect in TCA due to overriding by Page TSconfig.....40

Figure 29: Page TSconfig to override TCA configuration...................... 40

Figure 30: Backus-Naur form for object identifiers used by IRRE.......... 41

VI

List of figures

Figure 31: Examples of some object identifier....................................42

Figure 32: Sequence overview diagram: Edit a parent record...............43

Figure 33: Example of JSON output upon AJAX call.............................45

Figure 34: Sequence overview diagramm: Create a child record...........45

Figure 35: Extract of tx_kickstarter implementing IRRE...................... 54

VII

Introduction

1. Introduction

In consideration of functionalities and possibilities, TYPO3 [1] is an

enormous and powerful tool for administrating content data on the

internet and in intranets.

Complex scenarios can be solved and implemented by TYPO3 experts

with an accordant effort. Unfortunately those solutions cannot always be

applied easily and intuitionally. For instance, most editors do not have

any engineering insight.

My original motivation is built on a realistic scenario. This case-study will

be shown, analysed and enhanced in the following chapters.

1.1. Case-Study

The website of a travel business contains contents of about 300 different

hotels. It has to be possible to create and manage this data using the

TYPO3 back-end. Furthermore a hotel consists of different offers, such as

a “wellness special” or “relax weekend”. Additionally every single one of

these offers can vary in price depending on the season customers

chooses to book. Finally this results in a structure spanning three levels,

beginning with one hotel as parent, many offers as first generation and

also many prices as second generation. Each generation mentioned

depends on the previous generation. This scenario is known as a

composition of the cardinality 1:n.

8

Figure 1: Composition of involved entities

Hotel Offer Price

Introduction

1.2. General purpose

The general purpose of this work is to simplify and improve workflows of

editors by adequate modifications. Avoidable clicks and changes of the

view have to be disclaimed.

Furthermore, a technique shall be developed which offers the possibility

to collect and handle hierarchical information spread over multiple levels.

9

Comparison

2. Comparison

According to the general purpose this chapter will show the possibilities

to handle multidimensional structures with TYPO3 4.0.x and outline the

disadvantages. Finally, this results in a list of general requirements

concerning improvement.

2.1. TYPO3 Core

TYPO3 was initially developed in 1997 by Dane Kasper Skårhøj. That

initial version cannot be compared to nowadays state however. The

obtainable TYPO3 distribution is the software core. It covers the basic

concerns of the system regarding to content handling more than

satisfactory. In the course of time the possibility to broaden

functionalities to a specific demand was conceived by the so-called

Extension Manager. Hence an adjustment to the core package was not

necessary anymore. These extensions can reuse and build on the

functionalities of the base by using a certain degree of object-orientation

and inheritance. Since TYPO3 is implicit expandable by extensions of

other parties it augmented is called a Content Management Framework.

It establishes and defines certain basic conditions but nevertheless stays

absolutely flexible for enhancements.

2.1.1. Structures using regular database models

The regular database model stores data in each field of a table. Each field

and its usage is defined in the Table Configuration Array (TCA). TYPO3

offers two TCA types for handling relational data – “select” and “group”

with the subtype “db”.

The type “select” offers a selector box that shows records of another

table, the so-called “foreign table”. Thus it is possible to select a subset

10

Comparison

out of a superset of records. Additionally the TCA configuration property

“foreign_table_where” allows to reduce this superset by a regular SQL

“WHERE” clause. However the related records do not fully depend on

their parent. Thus other parents could create relations to the same child

records again. The creation of new child records can only be achieved by

using a wizard. The standard TYPO3 “add wizard” opens a pop-up window

that allows to enter data for the new record. The treatment of these sub-

records works similar by using the “edit wizard”.

The type “group” with the subtype “db” resembles “select”. Instead of

showing a selector box, a pop-up window opens that allows to select a

record from anywhere in the page structure. The TCA property “allowed”

defines which database tables could be used to get related. Creating new

and editing available records can also be done using wizards.

Both TCA types store the relations as a comma separated sequence of

UIDs. Due to this behaviour the parent record always has to be fetched

from database. After extracting again the UIDs out of this list the child

records can be fetched. Another disadvantage is that related children do

not even know that they have relationships to parental elements.

Both types offer the possibility to use an intermediate table by setting the

TCA property “MM”. Records of this intermediate table store the UID of

the source element and the UID of the destination element. Furthermore

it is possible to define individual sorting for each side of the relationship.

This allows the disposal of direct SQL queries. The disadvantage is, that

MM tables do not have a UID or PID and are not defined via TCA. The

consequence of which is that regular MM relations cannot have different

versions and cannot be reverted by using the history/undo functionality.

To edit a structure of three levels (e.g. hotel, offer and price) the pop-up

window containing an offer item opens another pop-up window displaying

a price item. To handle this, there have to be as many different windows

as structural levels exist.

11

Comparison

2.1.2. Structures using XML (“FlexForms”)

XML offers the possibility to build up multidimensional structures by

default. The emerging tree with nodes of parents, children and

grandchildren allows to be extended for any demand.

FlexForms support all available TCA types except itself and create a form-

in-a-form environment. Nested FlexForms are not possible at all.

The disadvantages are, that this XML data is stored as a string. To fetch

data of several sub nodes it is always necessary to parse the whole XML

hierarchy and to extract the required elements. Also, the space of a blob

field on the database is limited. If an error occurs during saving XML data

maybe the whole structure is damaged.

Furthermore, it is impossible to extend FlexForms dynamically. This

disables the aptitude to create new child records on demand. Sorting

elements inside XML is not implemented in TYPO3 by default.

12

Comparison

2.2. TYPO3 Extensions

There are two extensions available on the TYPO3 Extension Repository

that solve some of the disadvantages mentioned before. Thus, they allow

to improve usability and flexibility.

2.2.1. Extension kb_tca_section

The extension “kb_tca_section” [2] by Bernhard Kraft addresses to

regular database models. It provides a form-in-a-form solution that could

dynamically create, move and delete child records. The handling of a

third level of grandchildren is possible in just one window.

13

Figure 2: Using kb_tca_section for handling relational data

Comparison

To create, delete or move child records it is necessary to choose an

accordant action by clicking a check box or selecting an item of a selector

box and save the parent record. After the view has been reloaded again a

child record was created, deleted or moved by one position.

The relation itself is stored on the child record using a pointer field. This

field contains the UID of its accordant parent record and fits the

requirements of database normalization.

2.2.2. Extension dynaflex

The extension “dynaflex” [3] by Thomas Hempel addresses to the usage

of XML to handle the mentioned FlexForms. In dependence on TCA

dynaflex defines his own object, the Dynaflex Configuration Array (DCA).

It can be dynamically changed during runtime.

This software package offers various helper techniques to dynamically

manipulate a static XML structure. Thus it is possible to integrate new

child elements or remove them. Sorting has to be implemented

individually for the required demand by extension developers. The parent

record has to be saved for each action so that changes will be applied to

the hierarchy.

14

Comparison

2.3. Requirements

The advantages and disadvantages of the mentioned available techniques

will be compared to each other in a feature overview. Finally this results

in a list of demands and requirements that shall be implemented in Inline

Relational Record Editing.

“Usability” rates the possibility of intuitive handling of multidimensional

structures of user's perspective. “Extensibility” rates the ability of

extending existing structures. “Performance” rates the costs of handling

many data and extracting only a subset of information. “Consistency”

describes the resistance concerning errors on writing transactions and the

ability to make changes undone.

Regular database
models

Regular
FlexForms (XML)

Extension
kb_tca_section

Extension
dynaflex

Usability -- --- - -

Extensibility - + + ++

Performance - --- ++ ---

Consistency - --- ++ ---

Figure 3: Comparison of features available for TYPO3 4.0.x

The conclusion of the comparison is to allocate a technique with the

following abilities:

• Usability: Child records can be edited, created, removed or sorted

easily. Reloading the whole frame must be avoided when it is not

necessary. It is furthermore required that multidimensional

structures can be administrated in just one form without opening

several pop-up windows.

• Extensibility: Extending structures for developers has to be

possible by using TYPO3 standards such as the TCA. Further

individual programming for base functionalities have to be avoided.

The new feature has to be available for all other TYPO3 related

modules and extensions. Thus the development is done at the

15

Comparison

TYPO3 core instead of creating a new extension.

• Performance: For selecting subsets out of a superset it is required

to have a normalized database model. Fetching parental

information must be avoided when it is not necessary.

• Consistency: It has to be possible to revert changes by a roll-back

function such as “history/undo”. Furthermore the solution widely

has to be resistant against errors. If accidentally an error occurs

during writing transactions it should not lead to a chain of errors

affecting all other records and data.

16

Comparison

2.4. Engaged technologies

To fulfil the mentioned requirements some additional technologies have

to be engaged. AJAX [4] will be used to dynamically execute programs on

the server environment. The JavaScript framework “prototype.js” [5]

offers functions to easily perform cross-browser DOM actions, AJAX calls

or event-handing. AJAX' intent is to make web pages feel more

responsive by exchanging small amounts of data with the server behind

the scenes. The result is that the web page does not have to be reloaded

each time the user requests a change. The prototype framework is the

base of several other JavaScript frameworks.

For the reason that e.g. JavaScript structural data has to be exchanged

besides regular HTML/DOM data, the JSON [6] container will be used.

JSON is a subset of the object literal notation of JavaScript and is

commonly used with that language.

17

Compendium: Case-Studies

3. Compendium: Case-Studies

This chapter is written as a handbook for the TYPO3 community. It tells

developers how to implement extensions using Inline Relational Record

Editing. It is published in the TER as “irre_tutorial” [7].

3.1. Reusing “select” type for 1:n relations

Simple 1:n relations, between one parent and many other children have

formerly being realised using the TCA type “select”. The UIDs were stored

in a list in one field on the parent table, separated by commas. The

sequence of numbers in this list was the final sorting order of all affected

child records.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

$TCA["tx_irretutorial_1ncsv_hotel"] = Array (
...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_1ncsv_offer",
“foreign_table_where” =>

“AND tx_irretutorial_1ncsv_offer.pid=###CURRENT_PID###
ORDER BY tx_irretutorial_1ncsv_offer.title”,

"maxitems" => 10,
)

),
),
...

);

Figure 4: TCA type “select” for custom relations

The TCA type “select” (line 14 in code) defines the table of children by

using the property “foreign_table” (line 15 in code). The disadvantage is

that child records had to exist before they could be used to build a

relationship to a parent record.

18

Compendium: Case-Studies

The new TCA type “inline” contains the functionalities of Inline Relational

Record Editing. It now allows one to create new child records even if the

parent record is a new one and was not saved before.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

$TCA["tx_irretutorial_1ncsv_hotel"] = Array (
...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_1ncsv_offer",
"maxitems" => 10,

)
),

),
...

);

Figure 5: TCA for 1:n relations with sequential list

Only the type definition changed from “select” to “inline” (line 14 in

code). The disposal of the property “foreign_table” equals TCA type

“select”. This is the simplest way to migrate to Inline Relational Record

Editing without losing old relations.

19

Compendium: Case-Studies

3.2. Normalized data structure for 1:n relations

On a database, relations in a list of UIDs cannot be selected directly by a

query. Thus it is even better to use a normalized way of storing the

relational information. In the sequential approach of the previous section

the child records do not even know the UID of their parent. To get a

subset of children, first the parent has to be loaded and processed. After

that step all related child records have to be fetched and finally these

results could be narrowed to get the designated subset.

In a normalized 1:n context, the UID of the parent record is stored in a

separate field on every child record. This allows to directly acquire a

subset of children related to an ancestor. Before Inline Relational Record

Editing was available this could be done by using an individual wizard.

The wizard opened a pop-up window and offered the possibility to create

a new child record. The UID of the parent was written to a defined field in

the database table by clicking the save-button.

This solution comes close to Inline Relational Record Editing, but

unnecessarily opens new windows. Imagine a structure of four different

levels. To initially create top down the required entities there would be

one main back-end view and additionally three pop-up windows.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

$TCA["tx_irretutorial_1nff_hotel"] = Array (
...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_1nff_offer",
"foreign_field" => "parentid",
"foreign_table_field" => "parenttable",
"maxitems" => 10,

)
),

),
);

20

Compendium: Case-Studies

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

$TCA["tx_irretutorial_1nff_offer"] = Array (
"columns" => Array (

"parentid" => Array (
"config" => Array (

"type" => "passthrough",
)

),
"parenttable" => Array (

"config" => Array (
"type" => "passthrough",

)
),
"title" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_offer.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),

),
);

Figure 6: TCA for normalized 1:n relations

The field “offers” (line 11 of code) defines that of the accordant

“foreign_table” (line 15). The property “foreign_field” (line 16) tells the

system to store the UID of the parent record in the defined field on the

child record. The key “foreign_table_field” (line 17) defines the field on

the child side that stores the table name of the parent record. In this

case it would be “tx_irretutorial_1nff_hotel”.

When the parent record is completely identified by its UID and table

name on the child side this is also called a “weak entity”. Thus, the

accordant child record knows its parent.

21

Compendium: Case-Studies

22

Figure 7: Example view of 1:n relations

Compendium: Case-Studies

3.3. Intermediate tables for m:n relations

It could be required for child records to be associated with different

parent records and vice versa. If this is the case, then an intermediate

table containing only the relational information will be necessary.

Before IRRE was integrated TYPO3 supported the so-called MM-Relations

(many-to-many) to handle this. MM relations have a very limited

structure. It is not possible to edit a record of a MM table directly.

Furthermore no history/undo function is available for MM relations.

IRRE offers a new way to get a more flexible approach. Intermediate

tables are now used to have a regular TCA definition. This includes the

existence of UID, PID, timestamp and some other default fields. Thus,

modifications on a relationship can be reverted to a former state.

To apply this functionality an additional table is required – the

intermediate table. Auxiliary the involved entities have to refer to that

foreign table and must define in which field their UID information shall be

lodged.

The standard deployment on intermediate tables are bidirectional

relations. “Bidirectional” describes the way a relationship between two

objects can be visualized. In this case a parent record can see its children

and a child knows about its parents.

3.3.1. Bidirectional asymmetric m:n relations

Asymmetric behaviour of relations is the most common rule. The

condition for a relation to be asymmetric is that two different tables are

affected. The opposite is a symmetric relation which is described in the

following section. To get a step-by-step introduction we just relate hotels

to offers and care about prices later on.

23

Compendium: Case-Studies

The prefix “tx_irretutorial_...” of each table is missing in the UML scheme

to get a better overview. “hotel_offer_rel” is the intermediate table with

the information which hotel is related to which offer and vice versa.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

$TCA["tx_irretutorial_mnasym_hotel"] = Array (
...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnasym_hotel_offer_rel",
"foreign_field" => "hotelid",
"foreign_sortby" => "hotelsort",
"foreign_label" => "offerid",
"maxitems" => 10,

)
),

),
);
$TCA["tx_irretutorial_mnasym_hotel_offer_rel"] = Array (

"columns" => Array (
"hotelid" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.hotelid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnasym_hotel",
"maxitems" => 1,

)
),
"offerid" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.offerid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnasym_offer",
"maxitems" => 1,

24

Figure 8: UML scheme of simple bidirectional asymmetric relations

Compendium: Case-Studies

40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

)
),
"hotelsort" => Array (

"config" => Array (
"type" => "passthrough",

)
),
"offersort" => Array (

"config" => Array (
"type" => "passthrough",

)
),

),
);
$TCA["tx_irretutorial_mnasym_offer"] = Array (

...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_offer.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"hotels" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_offer.hotels",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnasym_hotel_offer_rel",
"foreign_field" => "offerid",
"foreign_sortby" => "offersort",
"foreign_label" => "hotelid",
"maxitems" => 10,

)
),

),
);

Figure 9: TCA for defining simple bidirectional asymmetric relations

The TCA source code example from above implements the structure

shown in Figure 8. The field to inherit the functionality of Inline Relational

Record Editing (line 11) is set to manage children of the intermediate

table by “foreign_table” (line 15) instead of the offer table directly. The

UID of the parent record will be written to the “foreign_field” on the

intermediate table (line 16). Furthermore manual sorting and the field to

hold this information is defined (line 17).

“foreing_label” tells TCEforms from which field the specific record title

should be generated (line 18). In this case the field “offerid” of the

intermediate table is used, which holds records of the entity “offer”. Thus,

the title of the related offer record will be shown inside the hotel record.

25

Compendium: Case-Studies

If the optional setting “foreign_label” is missing, TCEforms shows the

default label defined in $TCA[<table>]['ctrl']['label'].

The field “hotelid” on the intermediate table stores the UID of the parent

hotel. It is set to be of TCA type “select” and is pointing back to its own

table (line 26). The field “offerid” works similar (line 34). But it is very

important that these two fields only allow a maximum of one item to be

selected (“maxitems” must be set to one). Thus, it would also be possible

to edit the record of the intermediate table directly.

Figure 10 shows the possibility of directly selecting one hotel and one

offer that should be related to each other. Of course, it doesn't make any

sense to edit the intermediate table directly. This is just to transfer the

idea and behaviour behind Inline Relational Record Editing.

26

Figure 10: Editing relation on intermediate table directly

Compendium: Case-Studies

Since the price depends on the offer of a hotel it only concerns the

relationship. The solution to integrate prices in this scheme is to define

them as an attribute on the intermediate table used for hotels and offers.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

$TCA["tx_irretutorial_mnasym_hotel_offer_rel"] = Array (
...
"columns" => Array (

...
"prices" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.prices",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnasym_price",
"foreign_field" => "parentid",
"maxitems" => 10,

)
),
...

),
);
$TCA["tx_irretutorial_mnasym_price"] = Array (

...
"columns" => Array (

"parentid" => Array (
"config" => Array (

"type" => "passthrough",
)

),
"title" => Array (

"exclude" => 1,
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_price.title",
"config" => Array (

27

Figure 11: UML scheme of extended bidirectional asymmetric relations

Compendium: Case-Studies

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

"type" => "input",
"size" => "30",
"eval" => "required",

)
),
"price" => Array (

"exclude" => 1,
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_price.price",
"config" => Array (

"type" => "input",
"size" => "30",
"eval" => "double2",

)
),

),
);

Figure 12: TCA for extended bidirectional asymmetric relations

The field “price” (line 5 of code) is used as new attribute on the

intermediate table used for hotels and offers. The utilization of attributes

in general is explained in the following section “Attributes for each m:n

relation”.

The field “price” is of the TCA type “inline” again (line 8) to allow the

integration of several child records. It is used to be a normalized 1:n

relation as described in “Normalized data structure for 1:n relations” in a

previous section (lines 9-10 and 20).

3.3.2. Bidirectional symmetric m:n relations

Special cases of bidirectional asymmetric relations are symmetric

relations. The adjective symmetric describes the self referencing property

to the same table. It could be demanded that entities of the same type

have a relationship. Symmetric m:n relations handle this situation.

The travel business case-study was a good example: A relationship

between one or more hotels to each other as branch offices shall be

achieved. Indeed, a better matching task would be the representation of

a family. The husband is married to its spouse and both have two

children. All involved objects are of the same type – they are humans or

persons. Every relation is bidirectional symmetric.

28

Compendium: Case-Studies

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

$TCA["tx_irretutorial_mnsym_hotel"] = Array (
...
"columns" => Array (

"title" => Array (
"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.title",
"config" => Array (

"type" => "input",
"size" => "30",

)
),
"branches" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.branches",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnsym_hotel_rel",
"foreign_field" => "hotelid",
"foreign_sortby" => "hotelsort",
"foreign_label" => "branchid",
"symmetric_field" => "branchid",
"symmetric_sortby" => "branchsort",
"symmetric_label" => "hotelid",
"maxitems" => 10,

)
),

),
);
$TCA["tx_irretutorial_mnsym_hotel_rel"] = Array (

...
"columns" => Array (

"hotelid" => Array (
"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_rel.hotelid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnsym_hotel",
"maxitems" => 1,

)
),
"branchid" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_rel.branchid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnsym_hotel",
"maxitems" => 1,

)
),
"hotelsort" => Array (

"config" => Array (
"type" => "passthrough",

)
),
"branchsort" => Array (

"config" => Array (
"type" => "passthrough",

)
),

),
);

Figure 13: TCA for defining bidirectional symmetric relations

29

Compendium: Case-Studies

The field “branches” (line 11) links to the intermediate table but defines

the two pointer fields “foreign_field” and “symmetric_field” (line 16 and

19). The UID of the current main record will be set to one of these fields

according to which record initially created the record in the intermediate

table. If we edit the creator the “foreign_field” is used. If we edit the

related record the “symmetric_field” is used.

The disposal of “foreign_sortby” and “symmetric_sortby” (lines 17 and

20) equals the previously mentioned behaviour.

The pointer fields “hotelid” and “branchid” resemble the bidirectional

asymmetric approach. However, both fields are pointing back to the same

table of the entity “hotel” in this case.

3.3.3. Attributes for each m:n relation

The utilization of standard TCA instead of the standard MM style to

implement intermediate tables offers the possibility to use custom

30

Figure 14: Bidirectional symmetric m:n relations of hotels

Compendium: Case-Studies

attributes for each relation. A new attribute simply has to be added in the

TCA of the intermediate table and the SQL table definition. Rendering and

data handling is again done by the TYPO3 Core Engine.

In the following example the relation between hotels and offers is

attributed by a select field to define quality and a check box to denote an

all-inclusive offer.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

$TCA["tx_irretutorial_mnattr_hotel_offer_rel"] = Array (
...
"columns" => Array (

"hotelid" => Array (...),
"offerid" => Array (...),
"hotelsort" => Array (...),
"offersort" => Array (...),
"quality" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.quality",
"config" => Array (

"type" => "select",
"items" => Array (

Array("(1 star) *", "1"),
Array("(2 stars) **", "2"),
Array("(3 stars) ***", "3"),
Array("(4 stars) ****", "4"),
Array("(5 stars) *****", "5"),

),
)

),
"allincl" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.allincl",
"config" => Array (

"type" => "check",
)

),
),

);

Figure 15: TCA for adding attributes to each relation

The fields “quality” and “allincl” (lines 8 and 21) define regular TCA types

to be used as attributes on each relationship between hotels and offers.

The new TCA type “inline” could also be used in this case (see the

example to integrate prices in the previous section “Bidirectional

symmetric m:n relations”).

31

Compendium: Case-Studies

3.3.4. Using a record selector

Record selectors support the editor to create relations to a given set of

elements. A selector could be a simple selector-box or an element

browser. The selector-box implements the TCA type “select” and shows

records which are globally available. The element browser uses the TCA

type “group” with the subtype “db”. It opens a new pop-up window which

shows the page structure and enables to select records from the

accordant page.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

$TCA["tx_irretutorial_mnasym_hotel"] = Array (
...
"columns" => Array (

...
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnasym_hotel_offer_rel",
"foreign_field" => "hotelid",
“foreign_selector” => “offerid”,
"foreign_sortby" => "hotelsort",
"foreign_label" => "offerid",

32

Figure 16: Edit attributes for each relation

Compendium: Case-Studies

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

"maxitems" => 10,
)

),
),

);
$TCA["tx_irretutorial_mnasym_hotel_offer_rel"] = Array (

"columns" => Array (
"hotelid" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.hotelid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnasym_hotel",
"maxitems" => 1,

)
),
"offerid" => Array (

"label" => "LLL:EXT:[locallang-path]:tx_irretutorial_hotel_offer_rel.offerid",
"config" => Array (

"type" => "select",
"foreign_table" => "tx_irretutorial_mnasym_offer",
"maxitems" => 1,

)
),

),
);

Figure 17: TCA for a record selector

The most significant change is the inclusion of the parameter

“foreign_selector” (lines 11 and 29 in code). In this case the field

“offerid” is part of the intermediate table which was defined to be the

“foreign_table” (line 9). Thus, the record-selector will show available

entries of the “offer” table (line 33).

33

Figure 18: Using a record selector to create relations

Compendium: Case-Studies

3.3.5. Define uniqueness on relations

Relations between entities should possibly be unique. Concerning our

case-study it doesn't make any sense to build a relation from a hotel to

the same offer more than once. In this case it is demanded to define

uniqueness. The value of the field that is used to be unique can therefore

only appear once as relation. If the editor still tries to create multiple

relationships to the same child record he will be notified.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

$TCA["tx_irretutorial_mnasym_hotel"] = Array (
...
"columns" => Array (

...
"offers" => Array (

"label" => "LLL:EXT:irre_tutorial/locallang_db.xml:tx_irretutorial_hotel.offers",
"config" => Array (

"type" => "inline",
"foreign_table" => "tx_irretutorial_mnasym_hotel_offer_rel",
"foreign_field" => "hotelid",
“foreign_selector” => “offerid”,
“foreign_unique” => “offerid”,
"foreign_sortby" => "hotelsort",
"foreign_label" => "offerid",
"maxitems" => 10,

)
),

),
);

Figure 19: TCA for defining uniqueness handling

The “foreign_unique” property (line 12 in code) points to the same field

on the intermediate table as the “foreign_selector”. But it's also possible

to use uniqueness handling without any selector.

34

Compendium: Case-Studies

3.4. Appearance settings for TCEforms

Appearance configuration allows to define how relational sections should

be shown and behave in the back-end view.

3.4.1. Define visibility of child forms

The boolean keys “collapseAll” and “expandSingle” allow to define how

the input forms of children are displayed to the editor.

If the collapseAll property is enabled, all child records are represented by

their header-bar, showing an icon, the title and the control-items. On

clicking the icon or title, the accordant element will expand and exhibit its

secrets. This is a good way to save space on the screen and offer a quick

overview for child records on the next level.

The expandSingle behaviour ties in with the previous, but takes care that

only one child record in the same level is expanded. So, if someone edits

data in any element, clicking another one of the same type, results in

collapsing the current and expanding the next.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

$TCA["tx_irretutorial_1nff_hotel"] = Array (
...
"columns" => Array (

"offers" => Array (
"config" => Array (

"type" => "inline",
...
“appearance” => Array (

“collapseAll” => 1,
“expandSingle” => 1,

),
)

),
),

);

Figure 20: TCA for setting visibility of child records (appearance)

35

Compendium: Case-Studies

3.4.2. Define positions and style of new record link

Another appearance property “newRecordLinkPosition” allows to define

the position of the link to create new child records. Regarding to the

children themselves the link can appear at the top or bottom, at both

positions or not at all.

The boolean property “newRecordLinkAddTitle” appends the name of the

child table at the new record link. This helps to determine of which type

new child records will be created.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

$TCA["tx_irretutorial_1nff_hotel"] = Array (
"columns" => Array (

"offers" => Array (
"config" => Array (

"type" => "inline",
...
“appearance” => Array (

“newRecordLinkAddTitle” => 1,
“newRecordLinkPosition” => “both”,

),
)

),
),

);

Figure 21: TCA for changing appearance of new record links

Both keys (lines 8-9 in code) define the appearance during editing a

parent record. “newRecordLinkAddTitle” and “newRecordLinkPosition” can

be used independent to each other.

36

Figure 22: Changing appearance of new record links

Compendium: Case-Studies

3.4.3. Use combined mode for complex relational editing

In situations where an intermediate table is used normally, it is only

possible to select a child record on the parent side what also narrows the

editing process to the parent record only.

The combined mode offers a possibility to manipulate both sides of a

relationship directly. If a field on the child table is defined by the property

“foreign_selector” and the appearance “useCombination” is enabled the

whole child record can be rendered and edited in the back-end view.

Manipulating the displayed child record affects it directly and not just a

copy. Thus, the block of the child record is shown with a red border.

37

Figure 23: Use combined editing mode

Compendium: Case-Studies

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

$TCA["tx_irretutorial_mnasym_hotel"] = Array (
...
"columns" => Array (

"offers" => Array (
"config" => Array (

"type" => "inline",
“foreign_selector” => “offerid”,
...
“appearance” => Array (

“useCombination” => 1,
),

)
),

),
);

Figure 24: TCA for enabling the combined editing mode

The required configuration properties to enable the combined mode are

the “foreign_selector” (line 7 of code) and the appearance setting

“useCombination” (line 10). The child records to be displayed combined

to the parent are defined by the field on the intermediate table the

“foreign_selector” is set to.

3.4.4. Use drag'n'drop functionality to speed up sorting

Imagine you have a list of many records that shall be sorted manually. It

could take some time to put the first item to the end of that list by

clicking the move-down-button for each step.

To speed this case up the script.aculo.us framework is used to offer

drag'n'drop sorting. If a record should be moved from the top to the

bottom of a list, it just has to be dragged at the beginning and dropped

at the end. This feature is enabled by the appearance property

“useSortable”. “Sortable” is deduced of the JavaScript object of

script.aculo.us with the same name.

Of course it only works if there is at least a sorting column defined in TCA

for that table which stores the information. Thus, there has to be at least

a “sortby” in the ctrl-section, “foreign_sortby” or “symmetric_sortby” in

the field configuration.

38

Compendium: Case-Studies

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

$TCA["tx_irretutorial_1nff_hotel"] = Array (
...
"columns" => Array (

"offers" => Array (
"config" => Array (

"type" => "inline",
...
“appearance” => Array (

“useSortable” => 1,
),

)
),

),
);

Figure 25: TCA for enabling drag'n'drop sorting by script.aculo.us

Drag'n'drop sorting of child records is enabled by by the appearance

property “useSortable” (line 9 of code). Thus, the script.aculo.us feature

“Sortable” will be enabled.

The child records can be sorted by clicking the orange “move” icon and

dragging the selected block.

39

Figure 26: Using drag'n'drop sorting

Compendium: Case-Studies

3.5. Use Page TSconfig to override TCA settings

Page TSconfig allows to override TCA field configuration since TYPO3 4.1.

This offers a flexible opportunity to reuse tables and TCA definitions but

adapt it to the visual demands. The “Page TSconfig” can be set and

modified in the “page properties”.

TCEFORM.<table>.<field>.config {
 <property1> = <key1>
 <property2>.<subProperty> = <key2>
}

Figure 27: General Page TSconfig to override TCA settings

$TCA[<table>]['columns'][<field>]['config'][<property1>] = <key1>;
$TCA[<table>]['columns'][<field>]['config'][<property1>][<subProperty>] = <key2>;

Figure 28: General effect in TCA due to overriding by Page TSconfig

By default it is impossible to override all TCA properties. Thus, trying to

change the type from “inline” to “input” has no effect. For the TCA type

“inline” the allowed properties to be overridden are appearance,

foreign_label, foreign_selector, foreign_unique, maxitems, minitems,

size, autoSizeMax and symmetric_label. The complete whitelist can be

found in doc_core_tsconfig, section “Page TSconfig”. The evaluation of

allowed properties is done in TCEforms. Thus, extension developers with

special demands to this issue can influence and extend the whitelist by

modifying the array t3lib_TCEforms::$allowOverrideMatrix.

1:
2:
3:
4:
5:
6:
7:
8:

TCEFORM.tx_irretutorial_mnasym_hotel.offers.config {
 foreign_selector = offerid
 size = 5
}
TCEFORM.tx_irretutorial_mnasym_offer.hotels.config {
 foreign_selector = hotelid
 size = 5
}

Figure 29: Page TSconfig to override TCA configuration

The example shown above enables the assignment of record selectors for

the entities hotel and offer. This method is used in EXT “irre_tutorial” on

the pages “m:n asymmetric selector” and “m:n asymmetric combo”.

40

Implementation

4. Implementation

This chapter shows how Inline Relational Record Editing interacts with

existing modules. The intention is to get a quick overview of the concept

and the behaviour of the system for each part of the TYPO3 Core.

4.1. TCEforms

Since Inline Relational Record Editing is a method to dynamically create

and manipulate data inside a given multidimensional structure the most

action happens in the form renderer “TCEforms”.

The implementation is kept in a single class t3lib_TCEforms_inline which

is automatically instantiated by the constructor of t3lib_TCEforms.

4.1.1. Namespace hierarchy

IRRE handles parents, children, grandchildren, grandchildren of children

ad infinitum. It is necessary to identify each of these elements in the

whole structure and to know which branch belongs to which parent.

Therefore a new naming scheme was created. The names are set as CSS

identifier to each involved DOM object (e.g. <div id=”<irre-ident>”>).

<irre-ident> ::= 'data[' <pid> ']' <level-ident> { <level-ident> }
[<level-role> | <partial-ident>]

<level-ident> ::= '[' <tablename> '][' <uid> '][' <field> ']'

<level-role> ::= '_records'

<partial-ident> ::= '[' <tablename> '][' <uid> ']' <partial-role>

<partial-role> ::= '_' ('div' | 'header' | 'label' | 'disabled' | 'fields')

Figure 30: Backus-Naur form for object identifiers used by IRRE

A complete level in the structure is always described by a triple of

tablename, record UID and fieldname. Partially available information

(e.g. just tablename and record UID) describe a child record.

41

Implementation

We come back to the case-study of relating hotels to offers and offers to

prices. The following identifiers will be used for this scenario:

Identifier string Denotation

data[2][hotel][4][offers] a section containing generally all child
related data

data[2][hotel][4][offers]_records a section containing all child records

data[2][hotel][4][offers][offer][6]_div a section containing generally all data of
exact one child (here: one offer)

data[2][hotel][4][offers][offer][6]_fields a section containing all form fields
rendered by getMainFields() in TCEforms

data[2][hotel][4][offers][offer][6][prices][price][8]_div a section containing generally all data of
exact one child (here: one price)

Figure 31: Examples of some object identifier

The structural scenario of data objects can be rebuild by a complete

identifier string as shown above. Thus, every involved record could be

fetched from storage as well as its TCA and TSconfig configurations.

Since some actions are only executed in JavaScript at runtime in the

browser this improves handling the whole structure.

4.1.2. Edit a parent record

Imagine a back-end user starts to edit a parent record. Creating a new

parent record resembles editing an existing one – however the UID is a

string with the token “NEW” prepended instead of an integer. The record

will be fetched from storage using t3lib_transferdata and finally the forms

are rendered in t3lib_TCEforms::getMainFields(). Each field type, such as

input, text or inline has own functionalities to render the information.

If records implementing the Inline Relational Record Editing are involved

the function t3lib_TCEforms_inline::getSingleField_typeInline() is called.

This method fetches all related child records using t3lib_transferdata and

handles the internal identifiers of the namespace hierarchy. The

rendering of the fields of a child record is again done by

t3lib_TCEforms::getMainFields(). Thus, the possibility to recursively

execute the parental rendering function is integrated. This offers the

42

Implementation

opportunity to have complex multidimensional data structures with Inline

Relational Record Editing.

There are two methods in t3lib_TCEforms_inline – pushStructure() and

popStructure(). Both are used to build up a stack of levels for records

using IRRE. If the systems walks down the structural tree,

pushStructure() puts the current relative parent element on top of the

stack. If the level has been completely processed, popStructure()

removes the element from the top of the stack. Thus, it allows recursions

and every level knows about its parent and all grandparents.

43

Figure 32: Sequence overview diagram: Edit a parent record

TYPO3 back-end

:SC_alt_doc

makeEditForm()
 fetchRecord()

:t3lib_TCEforms

:t3lib_TCEforms_inline

:t3lib_transferData
renderRecord()
 renderRecord_inlineProc()

:t3lib_loadDBgroup

:t3lib_TCEforms
getMainFields()
 getSingleField()

:t3lib_TCEforms_inline
getSingleField_typeInline()
 pushStructure()
 getRelatedRecords()
 getRecord()
 renderForeignRecord()
 renderForeignRecordHeader()
 renderForeignRecordHeaderControl()
 «recusre»
 popStructure()

⊕ «create»

⊗ «(auto-)destroy»

⊕

⊕
⊗

⊕

⊗

•
•

•

⊕

⊗

⊕

⊗

edit parent record

tim
e

Implementation

4.1.3. Create new child records

Let's assume the forms of a parent record are completely rendered and

loaded. The back-end editor now wants to dynamically create new child

records by clicking on the “Create new record” link. After this event has

been triggered a sequence of actions follows:

The JavaScript functions of IRRE in t3lib/jsfunc.inline.js create a new

AJAX request to the PHP script entry handler typo3/alt_doc_ajax.php and

passes two arguments. The first one is the string “createNewRecord” and

just tells which action should be performed. The second argument

contains the object identifier as described in Figure 31 above.

Now the processing and rendering is delegated to the TYPO3 Core.

SC_alt_doc_ajax checks for security purposes if the first argument

passed by the AJAX call is allowed. If so the corresponding method in

t3lib_TCEforms_inline (in this case “createNewRecord(...)”) will be called

with the remaining arguments delivered by the AJAX request.

t3lib_TCEforms_inline::createNewRecord reproduces the structural level

stack by parsing the object identifier. Also the TCA and TSconfig

configurations for the affected tables and fields are loaded. Afterwards

the workflow is similar to the previous section. A new blank record is

virtually being created using t3lib_transferdata and t3lib_loadDBgroup.

The forms again are rendered by calling t3lib_TCEforms::getMainFields().

The results are pushed into an associative array of two keys. The first key

“data” is filled with the HTML of the new child record. The second key

“scriptCall” is an indexed array which stores several JavaScript actions

that should be performed in the browser on the client-side. For example,

there is anyway a call that integrates the HTML data into the DOM

structure. If input fields are required to be filled (TCA field configuration

“required”), this information is also sent using an additional “scriptCall”.

Finally, if “data” and “scriptCall” are completely set the mentioned array

44

Implementation

is converted to JSON and returned to the browser. A client-side

JavaScript processes the “scriptCall” section of the response and

performs the requested actions.

{ "data":"<div id=\"<irre-identifier>\">[HTML data]<\/div>",
"scriptCall":[

"inline.domAddNewRecord('bottom','<irre-identifier>','<irre-identifier>',json.data);",
"inline.memorizeAddRecord(...);",
"inline.addToDataArray({\"map\":{...},\"config\":{...});",
"typo3form.fieldSet(...,'required','',0,'');",
"Element.scrollTo('<irre-identifier>_div');",
"inline.fadeOutFadeIn('<irre-identifier>_div');"

] }

Figure 33: Example of JSON output upon AJAX call

45

Figure 34: Sequence overview diagramm: Create a child record

TYPO3 back-end

:SC_alt_doc_ajax

:t3lib_TCEforms

:t3lib_TCEforms_inline
createNewRecord
 parseStructureString()
 getRecord()

 renderForeignRecord()
 renderForeignRecordHeader()
 renderForeignRecordHeaderControl()
 «recusre»

 getJSON()

:t3lib_transferData
renderRecord()
 renderRecord_inlineProc()

:t3lib_loadDBgroup

:t3lib_TCEforms
getMainFields()
 getSingleField()

:t3lib_TCEforms_inline
getSingleField_typeInline()
 ...

⊕ «create»

⊗ «(auto-)destroy»

⊕

⊕
⊗

⊕

⊗

•

•

⊕

⊕

⊗

create child record

:t3lib_TCEforms_inline

tim
e

Implementation

4.2. TCEmain

TCEmain takes care about several actions that could be done with data

structures. These actions are: create, manipulate, copy, move and

delete. Due to inline related records build dependencies between parents

and children this also has to be considered in this case. That's why

TCEmain was changed to recursively descend in a structure tree and

perform the same actions as requested for the parent node.

4.2.1. Saving data after editing

When the back-end user clicks on the save button, all data of the form

fields are sent to SC_alt_doc as multidimensional array. The first

dimension holds the name of the tabel, the second the UID of the record

and the third one the field to write data in. This data array is forwarded

to t3lib_TCEmain and processed by the method process_datamap().

Since the parent record could be new and therefore without a proper UID

child records could not really build a relation to their parent. Therefore a

remap stack was integrated which performs a post-processing of new

records and updates all affected UIDs to their new proper integer values.

The remap stack will be extended in t3lib_TCEmain::checkValue_inline

and t3lib_TCEmain::checkValue_group_select. These are also the

locations in source code where relational data is handled.

If intermediate tables are affected a special handling of relational records

is necessary. It works similar to methods used by MM relations but is

improved to use regular TCA tables and to support bidirectional

asymmetric and symmetric relations.

The action for m:n relations happens in t3lib_loadDBgroup. For reading

relations the method readForeignField() will be used. Writing relational

information to the persistent storage happens in writeForeignField().

46

Implementation

4.2.2. Copy inline related records

When a record is copied, normally just this one record has to be

duplicated. If records that implement IRRE are affected the dependencies

have to be duplicated as well. Thus, if a parent record is copied all direct

related 1:n child records will be copied as well. If an intermediate table is

used only the relational information is affected and not the semantic

related child record itself.

After all records have been duplicated the relational information has to be

updated. So the pointer fields defined by “foreign_field” have to be set to

the new UID of the accordant parent record. This is achieved by using a

remap function similar to saving data structures.

4.2.3. Move inline related records

When a parent record is moved, also the direct affected child records will

get moved to the new page. But in this case only the field storing the PID

of each affected record will be updated. The relational information is

untouched.

Sorting on the same page via Web>List module also uses the moving

functionalities of TYPO3. The passed value that normally indicates the PID

a record should be moved to is used different here:

If the value is a positive integer and equals the current PID, the record is

moved to the first place in the sorting order. If the value is a negative

integer the record will be moved after the position of the record with the

absolute UID of the passed value. But this is standard behaviour of

TYPO3 and wasn't changed by Inline Relational Record Editing at all.

4.2.4. Delete inline related records

If a parent record shall be deleted the behaviour resembles copying of

47

Implementation

records – all direct affected child records will be deleted as well. If an

intermediate table is used only the relational information is removed and

not the semantic related child record itself.

Example:

Imagine hotels and offers are related using an intermediate table (see

the “Bidirectional asymmetric m:n relations” in the compendium with

table prefix “tx_irretutorial_mnasym”). Now a hotel is going to be

deleted. Thus, all records of the intermediate table (“..._hotel_offer_rel”)

which were related to that hotel are removed. The offers stay completely

untouched.

48

Quality Assurance

5. Quality Assurance

TYPO3 is known to be extremely stable. This requires a few rules to

assure not to loose reliability by fixing bugs or implementing new

features.

Misconceptions could possibly influence the system in a negative way.

That's why every change to the core of TYPO3 has to be reviewed. The

review team consists of at least two members of the TYPO3 core

development team.

There is a strict coding guideline for every developer that must be

followed. Furthermore it could happen, that some pieces of code were not

written clearly and are used redundantly or manipulate performance in a

negative way. In the worst case vulnerabilities could allow remote

command execution or injection of harmful data. These are the basic

conditions of a review process that shall avoid serious mistakes.

If the review of new code is done and evaluated as suitable a patch file

containing the code of all changes and extensions to current version is

announced on the core development mailing list. So other developers

have the possibility to get in touch with the changes and approve or

decline them.

If nobody objects the changes finally are send (“committed”) to a version

control system like SVN or CVS. At that time the enhancements are

obtainable to everyone.

Inline Relational Record Editing was reviewed during a weekend mid of

November 2006 by TYPO3 Core Team members [8] Ingmar Schlecht and

Sebastian Kurfürst at the University of Applied Sciences Hof. Some days

after this meeting a patch file with all changes was announced on the

mentioned mailing list. The first release of Inline Relational Record

Editing was published with TYPO3 4.1-beta1.

49

Perspective and further Development

6. Perspective and further Development

6.1. Integration in TYPO3 Core

6.1.1. Integration in TYPO3 Core 4.1

Inline Relational Record Editing was initially developed as a proof-of-

concept extension in September 2006. This extension is depreciated but

still available in the TYPO3 Extension Repository as “Dynamic Backend

Editing (dynbeedit)” [9].

Inline Relational Record Editing was developed from scratch in October

2006. The main focus was to create a version that could be integrated

into the TYPO3 core package later.

TYPO3 4.1 was pre-released with three beta versions and two release

candidates from 24th November 2006 to 21st February 2007. All builds

contained the new IRRE feature and were improved from version to

version. The final release of TYPO3 4.1 was scheduled to 6th March 2007.

6.1.2. Integration in TYPO3 Core 5.0

TYPO3 5.0 [10] is a ground breaking change in comparison with all

versions and branches before. It's not possible to give a definitive guide,

how Inline Relational Record Editing could be integrated into prospective

TYPO3. But Web 2.0 or better Web x.0 discussions will proceed. This

diploma thesis shows how it is currently implemented and allows to

transport the concept. It is also imaginable that the whole editing process

is covered by AJAX or any other futuristic functionality. So it could feel

like a desktop application but is still a flexible and cyclopaedic web

application framework.

When the base architecture of TYPO3 5.0 is almost finished, the time

comes to adapt the 4.x concept of IRRE.

50

Perspective and further Development

6.2. Development for TYPO3 4.x

There are some topics in scope of Inline Relational Record Editing

concerning the TYPO3 core that could also be called “missing features”.

The implementation of this features will be done during the further

development for the TYPO3 versions 4.2 and 4.3

6.2.1. Adjustments in TCEforms

Some adjustments concerning only TCEforms and thus usability are

clipboard functions and inline localization possibilities.

The clipboard actions cut, copy and paste offer an easy way to handle

data. This should also be part of Inline Relational Record Editing in future

TYPO3 versions.

The localization virtually extends the structure of each record.

Translations to other languages of a default record (e.g. in English) could

be seen as its child records. Translations are always in context of a 1:n

composition and depend fully on their parent. This scenario fits very good

into the concept of Inline Relational Record Editing.

6.2.2. FlexForms

FlexForms offer the possibility to handle structured data using a XML

tree. Actually this is an antagonism because Inline Relational Record

Editing offers the feature to hold data on a normalized data structure

instead of pushing everything into a single XML string.

But to be consequent, it is required that all TCA types are also available

for FlexForms. Thus, Inline Relational Record Editing will integrate the

missing FlexForms feature not later than by the release of TYPO3 4.2.

51

Perspective and further Development

6.2.3. Workspaces & Versioning

Workspaces and versioning have the ability to create different states of a

set of data at a given time. It could also be seen as a snapshot of

records. Currently workspaces only support non-relational data.

If a parent record is versionized all affected child records also have to be

versionzed and this is currently not possible. TYPO3 Core Team member

Dmitry Dulepov is currently working on a solution to allow versioning for

the whole page. Thus, the snapshot inherits all records on a given page

instead of only affected ones. Pages can be versionized by default.

6.2.4. Import & export of data structures

The system extension tx_impexp allows to export a page or data

structure to a file and import it again at another TYPO3 installation. This

module uses the sys_refindex table which keeps information about

relationships between elements. If structures implementing the IRRE

feature shall be exported this could lead to an endless recursion.

Furthermore the record a relation is pointing to could exist on a different

page than the one to be exported. This cross-linking causes a conceptual

problem, because it's only requested to export the selected page and

nothing else. If the structure is imported again it might happen that this

produces redundancies or duplicate relations.

52

Perspective and further Development

6.3. Implementation of IRRE in extensions

Furthermore it might make sense to integrate Inline Relational Record

Editing to some existing extensions. These extensions are mostly focused

on providing techniques for handling 1:n or m:n related data.

6.3.1. Integration in Party Information Framework

Party is the umbrella term for persons and organizations (e.g. companies,

associations, teams, etc.). Thus, the “Party Information Framework” [11]

by David Brühlmeier offers the relational management of all data

concerning parties. It implements the OASIS [12] definitions to describe

and handle information for addresses, customers and relationships.

Simple examples of use are the development of a family tree or a

reproduction of a business network like OpenBC/XING [13].

Inline Relational Record Editing offers the most techniques that are

required for the Party Information Framework, e.g. bidirectional

asymmetric and symmetric relations and the possibility to reuse entities

using an intermediate table.

Party Information Framework was formerly also know as Partner

Framework. This extension is available in the TER as “tx_partner” [14].

6.3.2. Integration in tx_kickstarter

The “Extension Kickstarter” [15] by Ingo Renner offers a possibility to

create table structures and thus an initial framework for new extensions

using a form wizard. Peter Foerger has volunteered to extend

tx_kickstarter to support Inline Relational Record Editing. A draft version

of his work looks promising and allows simply to implement IRRE by just

clicking.

53

Perspective and further Development

54

Figure 35: Extract of tx_kickstarter implementing IRRE

Synopsis

7. Synopsis

Inline Relational Record Editing bridges the gap between the repetitive

elements capabilities of FlexForms and the old field type of TCEforms

implementing relations. This is generally achieved by saving information

in nice separated database records with 1:n or m:n relationships what

FlexForms stored in just one big XML string.

Inline Relational Record Editing integrates a new TCA type, several new

dynamic techniques for handling and storing data into the Core of version

TYPO3 4.1. The different TYPO3 releases of the 4.1 development branch

have been downloaded about 15.000 times over a period of eleven

weeks.

The development of Inline Relational Record Editing and other related

new features inside TYPO3 is not yet finished. Members of the TYPO3

community can contribute their ideas and desires by using the bugtracker

or the project mailing list and follow the mission “to jointly innovate free

software enabling people to communicate”.

55

CD-ROM

CD-ROM

The enclosed CD-ROM contains three directories:

• root directory

• Contains the GNU General Public License Version 2 (GPL.txt)

• “diploma_thesis”

• Contains this document as PDF file.

• “publication”

• Contains an article about Inline Relational Record Editing in

German language published in “T3N Magazin für Open Source

und TYPO3”, yeebase media solutions GbR, Hannover, DE [16]

• “typo3_ext”

• Contains the extensions “irre_tutorial” and “irre_hotel”.

• “typo3_src”

• Contains all development versions of TYPO3 4.1, three beta

versions and two release candidates as Unix tarballs as well as

zipped archives. The final release can be obtained from the

TYPO3 website [1].

56

Bibliography

Bibliography

[1] http://www.typo3.org/

[2] http://typo3.org/extensions/repository/view/kb_tca_section/0.0.1/

[3] http://typo3.org/extensions/repository/view/dynaflex/1.7.2/

[4] http://www.adaptivepath.com/publications/essays/archives/

000385.php

[5] http://www.prototypejs.org/

[6] http://www.json.org/

[7] http://typo3.org/extensions/repository/view/irre_tutorial/

[8] http://typo3.org/teams/core/members/

[9] http://typo3.org/extensions/repository/view/dynbeedit/0.0.3/

[10] http://5-0.dev.typo3.org/

[11] http://wiki.typo3.org/index.php/Party_Information_Framework

[12] http://www.oasis-open.org/

[13] http://www.xing.com/

[14] http://typo3.org/extensions/repository/view/partner/

[15] http://typo3.org/extensions/repository/view/kickstarter/0.3.8/

[16] Oliver Hader: "Einfach irre!", T3N Magazin für Open Source und

TYPO3 (Nr. 7), 2007

57

Declaration of Authorship

Declaration of Authorship

I certify that the work presented here is, to the best of my knowledge

and belief, original and the result of my own investigations, done with no

other than the mentioned utilities and has not been published or

submitted, either in part or whole, for a degree at this or any other

University.

Oliver Hader

Hof, 26th February 2007

58

	Foreword
	Table of Contents
	List of Abbreviations
	List of figures
	1.Introduction
	1.1.Case-Study
	1.2.General purpose

	2.Comparison
	2.1.TYPO3 Core
	2.1.1.Structures using regular database models
	2.1.2.Structures using XML (“FlexForms”)

	2.2.TYPO3 Extensions
	2.2.1.Extension kb_tca_section
	2.2.2.Extension dynaflex

	2.3.Requirements
	2.4.Engaged technologies

	3.Compendium: Case-Studies
	3.1.Reusing “select” type for 1:n relations
	3.2.Normalized data structure for 1:n relations
	3.3.Intermediate tables for m:n relations
	3.3.1.Bidirectional asymmetric m:n relations
	3.3.2.Bidirectional symmetric m:n relations
	3.3.3.Attributes for each m:n relation
	3.3.4.Using a record selector
	3.3.5.Define uniqueness on relations

	3.4.Appearance settings for TCEforms
	3.4.1.Define visibility of child forms
	3.4.2.Define positions and style of new record link
	3.4.3.Use combined mode for complex relational editing
	3.4.4.Use drag'n'drop functionality to speed up sorting

	3.5.Use Page TSconfig to override TCA settings

	4.Implementation
	4.1.TCEforms
	4.1.1.Namespace hierarchy
	4.1.2.Edit a parent record
	4.1.3.Create new child records

	4.2.TCEmain
	4.2.1.Saving data after editing
	4.2.2.Copy inline related records
	4.2.3.Move inline related records
	4.2.4.Delete inline related records

	5.Quality Assurance
	6.Perspective and further Development
	6.1.Integration in TYPO3 Core
	6.1.1.Integration in TYPO3 Core 4.1
	6.1.2.Integration in TYPO3 Core 5.0

	6.2.Development for TYPO3 4.x
	6.2.1.Adjustments in TCEforms
	6.2.2.FlexForms
	6.2.3.Workspaces & Versioning
	6.2.4.Import & export of data structures

	6.3.Implementation of IRRE in extensions
	6.3.1.Integration in Party Information Framework
	6.3.2.Integration in tx_kickstarter

	7.Synopsis

	CD-ROM
	Bibliography
	Declaration of Authorship

